树莓派资料
显示屏资料
系统下载
树莓派Pico
首页 动态 发帖 版块 我的
 退出
游客  
等级:
金币:
经验值:

树莓派PCF8591模数AD模拟量转换教程 烟雾传感器浓度测试实验

  2591 
 0
 3
RASPI   RASPI 

一:PCF8591 AD/DA转换模块

模块介绍:

  PCF8591是单片、单电源低功耗8位CMOS数据采集器件,具有4个模拟量输入(其中一个为电压模拟输入)、一个模拟输出和一个串行I2C总线接口。3个地址引脚A0、A1和A2用于编程硬件地址,允许将最多8个器件连接至I2C总线而不需要额外硬件。器件的地址、控制和数据通过两线双向I2C总线传输。器件功能包括多路复用模拟输入、片上跟踪和保持功能、8位模数转换和8位数模拟转换。最大转换速率取决于I2C 总线的最高速率。



 I2C总线:   

I2C总线是由Philips公司开发的一种简单、双向二线制同步串行总线。它只需要两根线即可在连接于总线上的器件之间传送信息。   主器件用于启动总线传送数据,并产生时钟以开放传送的器件,此时任何被寻址的器件均被认为是从器件。在总线上主和从、发和收的关系不是恒定的,而取决于此时数据传送方向。如果主机要发送数据给从器件,则主机首先寻址从器件,然后主动发送数据至从器件,最后由主机终止数据传送;如果主机要接收从器件的数据,首先由主器件寻址从器件,然后主机接收从器件发送的数据,最后由主机终止接收过程。在这种情况下,机负责产生定时时钟和终止数据传送。

Image

I2C总线:

  SDA(串行数据线)和SCL(串行时钟线)都是双向I/O线,接口电路为开漏输出,需通过上拉电阻接电源VCC。当总线空闲时.两根线都是高电平,连接总线的外同器件都是CMOS(Complementary Metal Oxide Semiconductor互补金属氧化物半导体)器件,输出级也是开漏电路。在总线上消耗的电流很小,因此,总线上扩展的器件数量主要由电容负载来决定,因为每个器件的总线接口都有一定的等效电容。   主器件用于启动总线传送数据,并产生时钟以开放传送的器件,此时任何被寻址的器件均被认为是从器件。在总线上主和从、发和收的关系不是恒定的,而取决于此时数据传送方向。如果主机要发送数据给从器件,则主机首先寻址从器件,然后主动发送数据至从器件,最后由主机终止数据传送;如果主机要接收从器件的数据,首先由主器件寻址从器件,然后主机接收从器件发送的数据,最后由主机终止接收过程。在这种情况下,主机负责产生定时时钟和终止数据传送。

引脚定义:

本模块左边和右边分别外扩2路排针接口,分别说明如下:

Image

右边JP1, 5对接口: 左排是:   AOUT 芯片DA输出接口   AINO 芯片模拟输入接口0   AIN1 芯片模拟输入接口1   AIN2 芯片模拟输入接口2   AIN3 芯片模拟输入接口3 右排是:   GND 接地   GND 接地   INPUT2 热敏电阻接口   INPUT1 光敏电阻接口   INPUT0 电位计接口 左边J1, 4个接口:   SCL IIC时钟接口 接树莓派的scl口(接树莓派 I2C1 SCL口)   SDA IIC数字接口 接树莓派的sda口(接单树莓派 I2C1 SDA口)   GND 模块地 外接地(接树莓派GND)   VCC 电源接口 外接3.3v-5v (接树莓派电源) 这里用的是5V。

对应的端口分别作用如下: INPUT0端口 用短路帽接上AIN0,选择0-5V可调电压接入电路

INPUT1端口 用短路帽接上AIN1,选择光敏电阻接入电路

INPUT2端口 用短路帽接上AIN2,选择热敏电阻接入电路

PCF8591模块原理:

Image

PCF8591模数转换器原理图

  PCF8591是具有I2C总线接口的8位A/D及D/A转换器。有4路A/D转换输入,1路D/A模拟输出。I2C总线是Philips公司推出的串行总线,整个系统仅靠数据线(SDA)和时钟线(SCL)实现完善的全双工数据传输,即CPU与各个外围器件仅靠这两条线实现信息交换。I2C总线系统与传统的并行总线系统相比具有结构简单、可维护性好、易实现系统扩展、易实现模块化标准化设计、可靠性高等优点。 AIN0~AIN3:模拟信号输入端。

A0~A3:引脚地址端。

VDD、VSS:电源端(2.5~6V)

SDA、SCL:I2C总线的数据线、时钟线。

OSC:外部时钟输入端,内部时钟输出端。

EXT:内部、外部时钟选择线,使用内部时钟时EXT接地。

AGND:模拟信号地。

AOUT:D/A转换输出端。

VREF:基准电源端。

Image

PCF8591结构图

PCF8591模块结构:

第一字节:器件地址

Image

PCF8591地址字节

  PCF8591采用典型的I2C总线接口器件寻址方法,即总线地址由器件地址、引脚地址和方向位组成。飞利蒲公司规定A/D器件地址为1001。引脚地址为A2A1A0,其值由用户选择,因此I2C系统中最多可接23=8个具有I2C总线接口的A/D器件。地址的最后一位为方向位R/ ,当主控器对A/D器件进行读操作时为1,进行写操作时为0。总线操作时,由器件地址、引脚地址和方向位组成的从地址为主控器发送的第一字节。

第二字节:控制字节

  控制字节用于控制器件的各种功能,如模拟信号由哪几个通道输入等。控制字节存放在控制寄存器中,总线操作时为主控器发送的第二字节。其格式如下所示:

Image

PCF8591 控制字节

其中: D1、D0 两位是A/D通道编号:00通道0,01通道1,10通道2,11通道3 D2 自动增量选择(0为禁止自动增量,1为允许自动增量),如果允许自动增量,则在每次A/D转换后,通道编号会自动递增。 D3 特征位:固定值为:0。

D5、D4 模拟量输入选择:00为四路单端输入、01为三路差分输入、10为两路单端与一路差分输入、11为两路差分输入。 D6 使能模拟输出AOUT有效(1为有效,0为无效)。 D7 特征位:固定值为:0。

后面的编程会遇到,“bus.write_byte(address,0x40) ” 语句就是发送控制字“0x40”,40就代表控制字“0100 0000”,主要表示模拟输出有效,四路单端输入,禁止自动增量,A/D通道为0。

具体如下图所示:

Image

控制字

  当系统为A/D转换时,模拟输出允许为0。模拟量输入选择位取值由输入方式决定:四路单端输入时取00,三路差分输入时取01,单端与差分输入时取10,二路差分输入时取11。最低两位时通道编号位,当对0通道的模拟信号进行A/D转换时取00,当对1通道的模拟信号进行A/D转换时取01,当对2通道的模拟信号进行A/D转换时取10,当对3通道的模拟信号进行A/D转换时取11。

  在进行数据操作时,首先是主控器发出起始信号,然后发出读寻址字节,被控器做出应答后,主控器从被控器读出第一个数据字节,主控器发出应答,主控器从被控器读出第二个数据字节,主控器发出应答…一直到主控器从被控器中读出第n个数据字节,主控器发出非应答信号,最后主控器发出停止信号。

A/D转换应用开发流程:

一个A/D转换的周期的开始,总是在发送有效的读设备地址给PCF8591之后,A/D转换在应答时钟脉冲的后沿被触发。PCF8591的A/D转换程序设计流程,可以分为四个步骤:

1--发送写设备地址,选择IIC总线上的PCF8591器件。 2--发送控制字节,选择模拟量输入模式和通道。 3--发送读设备地址,选择IIC总线上的PCF8591器件。 4--读取PCF8591中目标通道的数据。 (1)、AD的位数:表明这个AD共有2n个刻度,8位AD,输出的刻度是0~255. 8591就是8为精度的,因此它digtalRead的数据在0-255之间。 (2)、分辨率:就是AD能够分辨的最小的模拟量变化,假设5.10V的系统用8位的AD采样,那么它能分辨的最小电压就是5.10/255=0.02V。

  AD转换的原理简单来理解就是通过电路将非电信号转为电信号,然后通过一个基准电压(PCF8591的基准电压是5V),然后判断这个电信号的电压高低,然后得到一个0-255(8位精度)的比值。

一:烟雾传感器与PCF8591实验。

烟雾传感器模块原理图

Image

  MQ-2气体传感器是一种表面离子型和N型半导体,它使用氧化锡半导体气敏材料,当环境温度在200至300℃时,氧化锡会吸附空气中的氧气并形成氧阴离子吸附,从而降低半导体中的电子密度,从而增加其电阻。当与烟雾接触时,如果晶界阻挡层被烟雾调制并发生变化,则可能导致表面电导率发生变化。因此,你可以获得烟雾存在的信息,烟雾浓度越高,材料的导电性越高,因此输出电阻越低。     烟雾报警传感器有两个LED指示灯。POWER-LED是电源指示灯,接通电源后常亮。DOUT-LED是数字输出指示灯,当没有检测到烟雾时熄灭,DO输出低电平;当检测到烟雾时,DO输出低电平,DOUT-LED指示灯亮。而判定是否有烟雾的临界值可以通过旋转蓝色元件上的十字螺丝调节,调节到没有烟雾时DOUT-LED灯刚好熄灭时即可。而AO模拟量信号可通过PCF8591的AD转换成相应的烟雾浓度数值,通过程序设定相应阈值后并让蜂鸣器发出报警。

硬件连接:

第1步接线:在本实验中,PCF8591模块的AIN0(作为模拟输入)连接到传感器的AO模拟量引脚

树莓派主板PCF8591模块
SDASDA
SCLSCL
5VVCC
GNDGND


烟雾传感器树莓派主板PCF8591模块
VCCVCC
GNDGND
DOGPIO0(BBCM17)
AO
AIN0

Image

Image

第2步:PCF8591模块采用的是I2C(IIC)总线进行通信的,但是在树莓派的镜像中默认是关闭的,在使用该传感器的时候,我们必须首先允许IIC总线通信,在树莓派系统设置里开启I2C功能即可。

Image


第3步:开始编程。这里先编写一个PCF8591.py库文件,后面再编写一个python程序引入这个库文件。

  PCF8591.py库文件就是PCF8591模块的程序,单独编写是为了便于重用。在这个脚本中,我们使用了一个放大器用于模拟输入和一个LED灯用于模拟输出,模拟输入不能超过3.3V!

  该程序也可以单独运行,用于测试3个电阻模块的功能。需用短路帽连接AIN0和INPUT0(电位计模块),连接AIN1和INPUT1(光敏电阻模块),以及连接AIN2和INPUT2(热敏电阻模块)。

  连接LED灯,AIN0(模拟输入0)端口用于接收来自电位计模块的模拟信号,AOUT(模拟输出)用于将模拟信号输出到双色LED模块,以便改变LED的亮度。

#!/usr/bin/env python
#------------------------------------------------------
#
#       您可以使用下面语句将此脚本导入另一个脚本:
#           “import PCF8591 as ADC”                
#   
#   ADC.Setup(Address)  # 查询PCF8591的地址:“sudo i2cdetect -y 1”
# i2cdetect  is  a  userspace  program to scan an I2C bus for devices.
# It outputs a table with the list of detected devices on the specified bus.
#   ADC.read(channal)   # Channal范围从0到3 
#   ADC.write(Value)    # Value范围从0到255
#
#------------------------------------------------------
#SMBus (System Management Bus,系统管理总线) 
import smbus   #在程序中导入“smbus”模块
import time

# for RPI version 1, use "bus = smbus.SMBus(1)"
# 0 代表 /dev/i2c-0, 1 代表 /dev/i2c-1 ,具体看使用的树莓派那个I2C来决定
bus = smbus.SMBus(1)         #创建一个smbus实例

#在树莓派上查询PCF8591的地址:“sudo i2cdetect -y 1”
def setup(Addr):
    global address
    address = Addr

def read(chn): #channel
    if chn == 0:
        bus.write_byte(address,0x40)   #发送一个控制字节到设备
    if chn == 1:
        bus.write_byte(address,0x41)
    if chn == 2:
        bus.write_byte(address,0x42)
    if chn == 3:
        bus.write_byte(address,0x43)
    bus.read_byte(address)         # 从设备读取单个字节,而不指定设备寄存器。
    return bus.read_byte(address)  #返回某通道输入的模拟值A/D转换后的数字值

def write(val):
    temp = val  # 将字符串值移动到temp
    temp = int(temp) # 将字符串改为整数类型
    # print temp to see on terminal else comment out
    bus.write_byte_data(address, 0x40, temp) 
    #写入字节数据,将数字值转化成模拟值从AOUT输出

if __name__ == "__main__":
    setup(0x48) 
 #在树莓派终端上使用命令“sudo i2cdetect -y 1”,查询出PCF8591的地址为0x48
    while True:
        print '电位计   AIN0 = ', read(0)   #电位计模拟信号转化的数字值
        print '光敏电阻 AIN1 = ', read(1)   #光敏电阻模拟信号转化的数字
        print '热敏电阻 AIN2 = ', read(2)   #热敏电阻模拟信号转化的数字值
        tmp = read(0)
        tmp = tmp*(255-125)/255+125 
# 125以下LED不会亮,所以将“0-255”转换为“125-255”,调节亮度时灯不会熄灭
        write(tmp)
        time.sleep(2)


显示结果:

Image

第4步:编写控制程序。

接入蜂鸣器:

Image

测试:我们通过点烟的方式产生可燃性气体靠近MQ-2气体传感器的位置。屏幕上将显示0到255之间的值。如果有害气体达到一定浓度,蜂鸣器会发出断续蜂鸣声,并且屏幕上会印有“Danger Gas”。

  你可以转动模块上电位器的轴来提高或降低浓度阈值。

  MQ-2气体传感器需要加热一段时间。等到屏幕上打印的值保持稳定并且传感器变热,这意味着它可以正常且敏感的工作。注意:气体传感器发热是正常的,实际上,温度越高传感器就越敏感。

#!/usr/bin/env python
import PCF8591 as ADC
import RPi.GPIO as GPIO
import time
import math

DO = 17
Buzz = 18
GPIO.setmode(GPIO.BCM)

def setup():
    ADC.setup(0x48)
    GPIO.setup  (DO,    GPIO.IN)
    GPIO.setup  (Buzz,  GPIO.OUT)
    GPIO.output (Buzz,  1)  #高电平不响,低电平触发报警蜂鸣

def Print(x):
    if x == 1:
        print ''
        print '   *********'
        print '   * Safe~ *'
        print '   *********'
        print ''
    if x == 0:
        print ''
        print '   ***************'
        print '   * Danger Gas! *'
        print '   ***************'
        print ''

def loop():
    status = 1
    count = 0
    while True:
        print 'ADC.read(0)==' , ADC.read(0)  #有烟雾时,该值增大
        
        tmp = GPIO.input(DO);
        print 'tmp==' ,tmp    
#无烟雾时为高电平,tmp=1,打印safe,有烟雾时为低电平,打印Danger Gas!
        if tmp != status:
            Print(tmp)
            status = tmp
        if status == 0:
            count += 1
            if count % 2 == 0:
                GPIO.output(Buzz, 0)  #检测到烟雾后,报警声为断续蜂鸣声,低电平为响
            else:
                GPIO.output(Buzz, 1)  #高电平不响
        else:
            GPIO.output(Buzz, 1)
            count = 0
                
        time.sleep(0.2)

def destroy():
    GPIO.output(Buzz, 1)
    GPIO.cleanup()

if __name__ == '__main__':
    try:
        setup()
        loop()
    except KeyboardInterrupt: 
        destroy()



标签:
作者签名: raspi.cc   楼主  2025-03-23 13:15:31
回复列表
Powered by RASPI _VERSION
© 2017-2025 树莓派极客版权
您的IP: 13.59.141.195 , 2025-04-03 15:33:52
Powered by RASPI _VERSION
© 2017-2025 树莓派极客版权